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Let a random variable x0 and a function f: [a, b]k Q [a, b] be given. A hierar-
chical sequence {xn: n=0, 1, 2,...} of random variables is defined inductively by
the relation xn=f(xn−1, 1 , xn−1, 2...., xn−1, k), where {xn−1, i: i=1, 2,..., k} is a
family of independent random variables with the same distribution as xn−1. We
prove a central limit theorem for this hierarchical sequence of random variables
when a function f satisfies a certain averaging condition. As a corollary under a
natural assumption we prove a central limit theorem for a suitably normalized
sequence of conductivities of a random resistor network on a hierarchical
lattice.

KEY WORDS: Random resistor networks; central limit theorem; hierarchical
lattices; renormalization group.

1. INTRODUCTION

The classical central limit theorem for independent and identically distrib-
uted (shortly IID) random variables can be presented in the following
way: let x0 be a random variable with a finite variance. We define induc-
tively a sequence {xn: n=0, 1, 2,...} of random variables as follows. Given
xn−1, let xn−1, 1 and xn−1, 2 be independent random variables with the same
distribution as xn−1 and define

xn=
xn−1, 1+xn−1, 2

2
. (1)



The central limit theorem implies that the normalized random variables

xn −E[xn]

`Var[xn]

converge in distribution to a unit normal variable. The question we address
is when does an analogous statement hold for sequences defined in a way
similar to (1) where the arithmetic mean is replaced by a more general
function f of two or more independent copies of xn−1,

xn=f(xn−1, 1 , xn−1, 2 ,..., xn−1, k). (2)

An example of a hierarchical sequence of this type is the sequence of
conductivities arising in a random resistor network on the so-called
diamond hierarchical lattice. In this case k=4 and f in the expression (2)
is given by

f(u1 , u2 , u3 , u4)=
1

1
u1
+

1
u2

+
1

1
u3
+

1
u4

. (3)

The above function f expresses the effective conductivity of two sequential
connections of conductors which are connected in parallel, where ui

(i=1, 2, 3, 4) represent the conductivities of the individual conductors. It
is well defined for u1 ,..., u4 \ 0, including the case when one or more of the
conductors is a perfect insulator (i.e., when one or more of the ui equals
zero). This model has been studied extensively in the physics literature as a
simple model for conductivity of a two-dimensional random medium (see
ref. 6 and references therein). Iterating the function f can be thought of as
a simple model of the renormalization group map.

In this paper we prove the central limit theorem for a hierarchical
sequence {xn} of random variables given by (2) when the function f satis-
fies a certain averaging condition (see Definition 1 and Theorem 2 below).

Definition 1. Let a and b two real numbers with a < b. We will say
that a continuous function f: [a, b]k Q [a, b] is averaging if the following
three conditions hold:

1. For all ui ¥ [a, b] (i=1, 2,..., k)

min
i

ui [ f(u1 , u2 ,..., uk) [max
i

ui.
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2. f is monotone increasing, that is, for all ui and u −i (with ui [ u −i for
i=1, 2,..., k)

f(u1 , u2 ,..., uk) [ f(u −1, u
−

2,..., u
−

k).

3. For all u < v in [a, b] and for any two distinct indices i1 , i2 ¥
{1, 2,..., k} there exist ui ¥ {u, v} (i=1, 2,..., k) such that ui1=u, ui2=v
and

u < f(u1 , u2 ,..., uk) < v.

Remark. Assumptions 1 and 2 are natural requirements on any
averaging operation. Assumption 3 says that f is sensitive enough to
varying its variables. This property is satisfied by several f which occur
naturally in applications. An example of an f which satisfies conditions 1
and 2 but not condition 3 is f(u1 ,..., uk)=min(u1 ,..., uk). As is well known,
the hierarchical sequence defined by iterating this f satisfies a non-Gaussian
limit theorem (see ref. 2, p. 85).

Theorem 2. Let a < b. Let f: [a, b]k Q [a, b] be averaging. Assume
that the range of a random variable x0

R(x0)={u: for any E > 0 P[|x0 −u| < E] > 0}

is contained in [a, b] and consists of more than one point. Suppose there
exists c ¥ (a, b) such that a hierarchical sequence xn, defined as in (2),
converges to c in probability. Also assume that f is twice continuously dif-
ferentiable in the neighborhood of (c, c,..., c) and that “f

“ui
(c, c,..., c) ] 0

(and hence > 0 by Assumption 2 above) for at least two distinct indices i.
Then the random variables

xn −E[xn]

`Var[xn]

converge to a unit normal variable in distribution.

A central limit theorem for the conductivity of a class of random
resistor networks on hierarchical lattices will be proven as a corollary of
Theorem 2 (Corollary 4).

The paper is organized as follows. In Section 2 we introduce random
resistor networks on hierarchical lattices as an example of iterations of
averaging functions. An application of Theorem 2 to this particular situa-
tion gives a central limit theorem for conductivity of a class of random
resistor networks (Corollary 4). In Section 3 we state and prove a general
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central limit theorem (Proposition 5) for sequences in which the n+1-st
term has the same distribution as a linear combination of k independent
copies of the nth term up to a small (in a sense we make precise) correction.
This theorem is used in Section 4 to prove our main result (Theorem 2).
Proofs of two technical results used in Section 2 (Proposition 3) and in
Section 4 (Lemma 8) are put in the appendix to increase readability of the
main text of the paper.

2. RANDOM RESISTOR NETWORKS

We start from a brief discussion of random resistor networks on hier-
archical lattices. More details can be found in refs. 3 and 6. Let
G=(S, B, (st , sb)) be a connected graph with the set of sites (vertices) S,
the set of bonds (edges) B, the top site st and the bottom site sb. The top
and bottom sites are called surface sites. These are the sites we apply a unit
potential difference to. All other sites are called internal sites. Let k be the
total number of bonds of G. We will assume that any self-avoiding path
connecting the two surface sites of G has at least length 2, and that there
are at least two bond-disjoint self-avoiding paths connecting the two
surface sites of G.

Let us label the bonds of G by integers 1,..., k. For each i=1,..., k let
ui \ 0 be the conductivity of the i th bond of G and let h(u1 , u2 ,..., uk)
denote the effective conductance of the resulting resistor network between
its surface sites. In other (perhaps more familiar) words, we can introduce
the resistivities 1

ui
and calculate the effective resistance of the system of

resistors using Kirchhoff laws. h is then the inverse of the effective resis-
tance. Define f: [0,.)k Q [0,.) by

f(u1 , u2 ,..., uk)=
h(u1 , u2 ,..., uk)
h(1, 1,..., 1)

. (4)

f is the effective conductivity (normalized conductance) of the resistor
network.

Proposition 3. f given by (4) is an averaging function in the sense
of Definition 1. Proof is given in the Appendix.

Given a nonnegative random variable x0, representing the conductivity
of an individual bond of our graph, we now obtain, by iterating f as in (2),
a hierarchical sequence xn of random variables, which can be interpreted as
effective conductivities of a sequence of graphs Hn defined as follows.

A hierarchical lattice H={Hn: n=0, 1, 2,...} is generated inductively
from a fixed graph G with k bonds, satisfying the above assumptions. At
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the level 0 H0 is a single bond, at the level 1 H1=G, and at any level n > 1
a graph Hn is constructed by replacing each bond of G by a copy of Hn−1,
whose surface sites are placed at the endpoints of the bond. Hence Hn is a
graph with kn bonds, to the two surface sites of which a potential difference
is applied. The (random) effective conductivity of Hn (cf. (4)) between the
surface sites is denoted by xn.

We are interested in the fluctuations of the effective conductivity of
the hierarchical lattice in the infinite volume limit (nQ.). Corollary 4 is a
central limit theorem for the conductivities xn under the assumption that
the limiting effective conductivity does not vanish, i.e., that the system is in
the conducting phase. More precisely, let m0 be a distribution of x0. In ref. 7,
Shneiberg proved that there exists a c(m0) such that xn converges to c(m0)
in probability (see ref. 4 for related results2). Moreover, there exists a

2 See also errata at the end of this volume.

number pc(H) such that

c(m0)=˛ 0 if P[x0 > 0] [ pc(H)

positive if P[x0 > 0] > pc(H).

We mention here (though we will not use this) that pc(H) is the critical
density of bond percolation on H. Our assumptions on G, that is, that any
self-avoiding path connecting the two surface sites has length at least two
and that there exist at least two bond-disjoint self-avoiding paths connect-
ing the surface sites, guarantee that 0 < pc(H) < 1. The above formula says
that the system is in a conducting phase (c(m0) > 0) if and only if it is in a
supercritical phase (P[x0 > 0] > pc(H)). Note also that if the system is in a
conducting phase then f satisfies all the assumptions of Theorem 2 and we
obtain the following corollary:

Corollary 4. Let b be a positive number. Let xn be the effective
conductivity of a random resistor network on a hierarchical lattice H=
{Hn: n=0, 1, 2,...} described above. Assume that the range of x0 is in
the interval [0, b] and consists of more than one point. Let pc(H) be a
critical density of bond percolation on H. If P[x0 > 0] > pc(H) then the
random variables

xn −E[xn]

`Var[xn]

converge in distribution to a unit normal variable.

Remark on Corollary 4. Let p=P[x0 > 0] and g(p)=P[x1 > 0].
Note that the function g(p) is a probability that the two surface sites of G
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are connected by a set of bonds consisting of positive conductors, hence
does not depend on the distribution m0 of x0 but depends only on the
parameter p. The exact value of pc(H) can be found as a unique repulsive
fixed point of the equation g(p)=p in the interval (0, 1) (see ref. 7). In
case of diamond lattice f is given by (3), g(p)=2p2−p4, hence
pc(H)=`5−1

2
.

Corollary 4 says that if the system is in a conducting phase then a
sequence of suitably normalized effective conductivities converges to a unit
normal variable in distribution. At the critical point (P[x0 > 0]=pc(H))
we expect a non-Gaussian behavior for xn. In case of the diamond hierar-
chical lattice, this non-Gaussian behavior is studied in ref. 5.

3. A CENTRAL LIMIT THEOREM FOR A CLASS OF SEQUENCES

SATISFYING AN APPROXIMATE LINEAR RECURSION

Our main tool for proving Theorem 2 is the following general central
limit theorem which may be of independent interest (e.g., in study of con-
ductivity problems on translationally invariant lattices).

Proposition 5. For all n \ 0, let k be a positive integer greater than
or equal to 2. Assume that a sequence {xn: n=0, 1, 2,...} of real-valued
random variables satisfies the following recursive relation.

xn+1=C
k

i=1
an, ixn, i+zn ,

where for each n \ 0 an, i are real numbers, zn is a real-valued random
variable, and {xn, i: i=1,..., k} are IID random variables with same distri-
bution as xn. Let us assume that for each i [ k an, i converges to some
real number ai. We also assume that ai ] 0 for at least two distinct indices i.
Let ln=`;k

i=1 a
2
n, i and l=limnQ. ln. Furthermore, assume that there

exist d1 > 0, d2 > 0, C1 > 0 and C2 > 0 with d1 < d2 such that for any n

Var[xn] \ C2
1l

2n(1−d1)2n

Var[zn] [ C2
2l

2n(1−d2)2n.

Then the random variables

xn −E[xn]

`Var[xn]

converge in distribution to a unit normal variable.
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Let us start by introducing some notation. For all n \ 0 let

yn=C
k

i=1
an, ixn, i (5)

and for all n \ 1 let

x2n=
xn −E[xn]
l0l1 · · ·ln−1

y2n=
yn −E[yn]
l0l1 · · ·ln−1

(6)

z2n=
zn −E[zn]
l0l1 · · ·ln−1

.

We then have

y2n=C
k

i=1
an, ix2n, i. (7)

Then the assumptions in Proposition 5 say that for all n \ 1

x2n+1=
1
ln

(y2n+z2n)

`Var[y2n]=ln `Var[x2n]

`Var[x2n] \ C1(1−d1)n

`Var[z2n] [ C2(1−d2)n.

(8)

Proposition 5 will be proved using the fact that the characteristic functions
of xn−E[xn]

`Var[xn]
converge to that of a Gaussian. The following lemma, which

studies convergence of variances of x2n is a step in this direction. Note that

xn −E[xn]

`Var[xn]
=

x2n
`Var[x2n]

. (9)

Lemma 6. The limit

s.= lim
nQ.
`Var[x2n]
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exists and is a positive real number. Moreover, there exist positive real
constants C3, C4, and C5 such that for all n \ 1

`Var[x2n] \ C3

`Var[x2n] [ C4

`Var[y2n] [ C5

Proof. From (8), using the triangle inequality, we get

|`Var[x2n+1]−`Var[x2n]|=:`Var[x2n+1]−
1
ln
`Var[y2n] :

[
1
ln
`Var[z2n]

[
1
l
C2(1−d2)n

where l=infn ln > 0. By summing up the above inequality over all n \ m,
we obtain a positive constant C6 such that for all m \ 1

C
.

n=m
|`Var[x2n+1]−`Var[x2n]| [ C6(1−d2)m.

Since the above series converges, existence of (finite) s. follows. Moreover,
for all m \ 1

|s.−`Var[x2m]| [ C6(1−d2)m,

which, in view of (8) implies that

C1(1−d1)m [`Var[x2m] [ s.+C6(1−d2)m.

It now follows from the assumption that d2 > d1, that s. is not zero. The
rest of Lemma 6 follows immediately from the positivity of s..

The next lemma will allow us to extend the result about convergence
of the variances to that of the characteristic functions. Its content are
elementary characteristic function estimates.
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Lemma 7. Let C7 be any positive constant, and let X and Y be
random variables with zero means and variances less than C2

7. Then for all
t(|t| < 1

C7
)

|ln E[exp(itX)]− ln E[exp(itY)]| [ 4C7t2`E[(X−Y)2].

Also we have

lim
tQ 0

ln E[exp(itX)]
t2

=−
1
2
Var[X].

Proof. Since |e iu−1−iu| [ u2

2 for any real number u,

|E[exp(itX)]−1| [ t2
E[X2]

2
.

Therefore for |t| < 1
C7
, the value E[exp(itX)] lies inside of a circle of radius

1/2 centered at (1, 0) in the complex plane (and similarly for Y). Hence for
|t| < 1

C7
the ln E[exp(itX)] is holomorphic, where ln denotes the principal

branch of the logarithm. Since |ln u− ln v| [ 2 |u−v| for any complex
number u and v with |u−1| [ 1

2 and |v−1| [ 1
2 , for |t| <

1
C7
we have

|ln E[exp(itX)]− ln E[exp(itY)]|

[ 2 |E[exp(itX)]−E[exp(itY)]|=2 |E[exp(itX)(1− exp(it(Y−X)))]|

[ 2E[|exp(itX)−1| |1− exp(it(Y−X))|]+2E[|1− exp(it(Y−X))|]

[ 2t2E[|X| |Y−X|]+t2E[(Y−X)2]

[ 4t2C7 `E[(X−Y)2],

where in the last part we used Cauchy–Schwarz inequality and the triangle
inequality. The second part of Lemma 7 is standard and the proof can be
found in many basic probability textbooks (see, for example, ref. 2, p. 103).

Proof of Proposition 5. Let fn denote the characteristic function of
the normalized random variable x2n:

fn(t)=E[exp(itx2n)]

We shall prove that there exists a positive constant C8 such that for any
|t| < 1

C8

lim
nQ.

ln fn(t)=− 1
2 s

2
.t

2.
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By continuity theorem (see ref. 2, p. 99) this will imply that x2n converges in
distribution to a normal variable with mean zero and variance s2

. and, in
view of (9) the proof will be complete.

From Lemmas 6 and 7, it follows that there exists a positive constant
C8 such that for any |t| < 1

C8
and any n \ 1

: ln E[exp(itx2n+1)]− ln E 5exp 1 it 1
ln

y2n 26: [ 4C8t2=Var 5
z2n
ln
6 .

For all n and i [ k, let bn, i=
an, i
ln
. Then from (7) and (8), there is a positive

constant C9 such that for all |t| < 1
C8
and any n \ 1

: ln fn+1(t)− C
k

i=1
ln fn(bn, it) : [ C9t2(1−d2)n.

Now, let cn, j be any real numbers satisfying ;j c
2
n, j=1. Applying the above

inequality with cn, jt in place of t and summing over j we get

C
j

: ln fn+1(cn, jt)− C
k

i=1
ln fn(cn, jbn, it) : [ C9t2(1−d2)n.

It follows that for all |t| < 1
C8

: ln fn+m(t)− C
i1 , i2 ,..., im

ln fn(tbn, i1bn+1, i2 · · ·bn+m−1, im) :

[ C9t2 C
m−1

p=0
(1−d2)n+p [

C9

d2
t2(1−d2)n. (10)

Now, by assumption, at least two ai are nonzero which implies that

max
i1 , i2 ,..., im

bn, i1 bn+1, i2 · · ·bn+m−1, im

converges to zero when mQ.. From the second part of Lemma 7, it
follows that for any n and any E1 > 0 there exists an M1(n, E1) such that for
all m \M1

|ln fn(tbn, i1bn+1, i2 · · ·bn+m−1, im)+
1
2 t

2(bn, i1bn+1, i2 · · ·bn+m−1, im)
2 Var[x2n]|

[ E1t2(bn, i1bn+1, i2 · · ·bn+m−1, im)
2.
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Hence for any m \M1, by summing the above inequality over all
i1 , i2 ,..., im, we obtain

: C
i1 , i2 ,..., im

ln fn(tbn, i1bn+1, i2 · · ·bn+m−1, im)+
1
2 t

2 Var[x2n] : [ E1t2. (11)

From (10) and (11), using the triangle inequality, we have for all n, E1 > 0,
and |t| < 1

C8

lim sup
mQ.

: ln fn+m(t)+
1
2
t2 Var[x2n] : [ E1t2+

C9

d2
t2(1−d2)n.

Since E1 > 0 is arbitrary, the proof is finished by taking the limit nQ..

4. PROOF OF THE MAIN THEOREM

In order to apply Proposition 5 to a hierarchical sequence, we need to
verify that the sequence satisfies the required variance bounds. As a first
step in proving the upper bound we will use the following estimate of the
large deviations of xn. While this estimate is probably not optimal (see the
remark following the statement of the lemma), it is sufficient to prove the
variance bounds necessary to verify the assumptions of Proposition 5.

Lemma 8. Let a and b be real numbers with a < b, and
f: [a, b]k Q [a, b] be averaging. Also let x0 be an [a, b]-valued random
variable. Furthermore assume that there exists a c ¥ [a, b] such that xn,
defined as in (2), converges to c in probability. Then for any E > 0 there
exists an M> 0 such that for all n

P[|xn −c| > E] [MEn

Remark. Roughly speaking, the lemma says that P[|xn −c| > E]
decays faster than En for any E. In fact, based on analogy with large devia-
tion probabilities for sums of independent, identically distributed random
variables (ref. 2, p. 74), we would expect an upper bound of the form
exp[−I(E) Cn] with a C > 1. It would be interesting to prove such a bound
for hierarchical sequences considered in this paper.

Proof of this lemma is given in the Appendix.
From now on, until the end of the section, we assume all the assump-

tions of Theorem 2. Let us remind that c denotes the limit of xn in probability.
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Let also cn=E[xn]. Then, since the xn are uniformly bounded, we also
have c=limnQ. cn. Let us define

an, i=
“f
“ui

(cn , cn ,..., cn)

ai=
“f
“ui

(c, c,..., c)

ln== C
k

i=1
a2n, i

l== C
k

i=1
a2i

l=inf
n
ln.

(12)

By expanding f at (cn , cn ,..., cn), we get

xn+1=f(cn , cn ,..., cn)+C
k

i=1
an, i(xn, i −cn)+O 1 C

k

i=1
(xn, i −cn)22 .

For each n let

dn=f(cn , cn ,..., cn)−cn C
k

i=1
an, i (13)

and let

zn=xn+1 − C
k

i=1
an, ixn, i. (14)

Then

zn=dn+O 1 C
k

i=1
(xn, i −cn)22 . (15)

Note that (14) can be viewed as a relation in Proposition 5. Hence in order
to prove the main theorem we only need to show that xn and zn (defined as
in (2) and (14)) satisfy the variance bounds in Proposition 5. Note that by
property 1 in Definition 1, for every u we have f(u, u,..., u)=u; differen-
tiating this relation at u=c gives have ; ai=1 and, since ai \ 0 and least
two of the ai are different from zero, this implies 0 < l < 1.
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We now use Lemma 8 to prove Propositions 9 and 10. Theorem 2 will
then follow from Proposition 5. To prove Propositions 9 and 10, we need
the following additional notation: Let

yn=C
k

i=1
an, ixn, i. (16)

Then

xn+1=yn+zn (17)

Let the family {x −n, i: n=0, 1, 2,..., i=1, 2,..., k} be an independent copy of
{xn, i: n=0, 1, 2,..., i=1,..., k}, i.e., the families are independent and the
joint distribution of the variables in the first family is the same as that of
the variables in the second. Let

x −n=x −n, 1.

The sequence x −n is then an independent copy of the sequence xn. In the way
analogous to (16) and (17) we define

y −n=C
k

i=1
an, ix

−

n, i.

and

z −n=x −n+1−y −n.

We have the following variance bounds.

Proposition 9. For any E > 0 there exists an M> 0 such that for
all n

Var[zn] [M(l+E)4n.

Proof. Since f is twice continuously differentiable in the neigh-
borhood of (c, c,..., c), it follows from (15) that

Var[zn] [M1E[(xn −cn)4] (18)

with an M1 > 0. Writing

xn −x −n=(xn −cn)−(x −n−cn),
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expanding and using the independence of xn and x −n we obtain

E[(xn −x −n)
4]=2E[(xn −cn)4]+6(E[(xn −cn)2])2,

whence, using (18) we get

Var[zn] [
M1

2
E[(xn −x −n)

4]. (19)

To estimate the right hand side of the above inequality, we proceed induc-
tively. First note that

E[(yn −y −n)
4] [ 1 C

k

i=1
a4n, i2 E[(xn −x −n)

4]+l4n(E[(xn −x −n)
2])2

[ l4n(E[(xn −x −n)
4]+(E[(xn −x −n)

2])2).

Since for all real a and b, (a+b)4 [ 8(a4+b4) we have

E[(zn −z −n)
4] [ 8(E[(zn −dn)4]+E[(z −n−dn)4]).

Hence from (15) there exists an M> 0 such that for all n

E[(zn −z −n)
4] [ME[(xn −cn)8].

Since for any E > 0 there exists M such that for all a and b (a+b)4

[ (1+E) a4+Mb4, for such E there exists MŒ such that

E[(xn+1 −x −n+1)
4]

=E[(yn −y −n+zn −z −n)
4]

[ (1+E) E[(yn −y −n)
4]+ME[(zn −z −n)

4]

[ (1+E) l4n(E[(xn −x −n)
4]+(E[(xn −x −n)

2])2)+MŒE[(xn −cn)8].

Since, by the large deviation estimate of Lemma 8, for any E > 0 there
exists N such that for all n \N

MŒE[(xn −cn)8] [ EE[(xn −cn)4]+En.

It follows that for any E there exists an N such that for all n > N

E[(xn+1 −x −n+1)
4] [ (l+E)4 (E[(xn −x −n)

4]+E[(xn −x −n)
2]2)+En. (20)
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Since

E[(xn −x −n)
2]=2 Var[xn],

in order to estimate the second term in (20), it is sufficient to estimate the
variance of xn. By the triangle inequality we have

`Var[xn+1] [ ln `Var[xn]+`Var[zn].

For any E1 > 0, from (18) we have

Var[zn] [M1E
2
1E[(xn −cn)2; |xn −cn | [ E1]+M1E[(xn −cn)4; |xn −cn | \ E1].

Applying the large deviation estimate of Lemma 8 to the above inequality,
we prove that for any E > 0 there exists M> 0 such that for all n

Var[zn] [ E2 Var[xn]+M2E2n.

It now follows from the triangle inequality that

`Var[zn] [ E`Var[xn]+MEn.

Hence

`Var[xn+1] [ (ln+E)`Var[xn]+MEn

and it follows by induction on n that for any E > 0 there exists an MŒ > 0
such that

E[(xn −x −n)
2] [MŒ(l+E)2n. (21)

From (20) and (21) it easily follows that for any E > 0 there exist M, N
such that for all n > N

E[(xn+1 −x −n+1)
4] [ (l+E)4 E[(xn −x −n)

4]+M(l+E)4n+En.

By induction on n it now follows that for any E > 0 there exist M, N such
that for all n > N

E[(xn −x −n)
4] [M(l+E)4n.

Together with (19) this proves the proposition.

Central Limit Theorems for Nonlinear Hierarchical Sequences 791



Proposition 10. For any E > 0 there exists an M> 0 such that for
all n

Var[xn] >M(l− E)2n

Proof. For all E1 > 0 and n let

C(n, E1)=(E[(xn −x −n)
2; |xn −c| [ E1; |x

−

n−c| [ E1])
1
2 .

Since C(n, E1)2 [ 2 Var[xn] it suffices to show that for any E > 0 there exist
E1 > 0, M > 0 such that

C(n, E1) >M(l− E)n.

Take any E > 0. By the mean value theorem, there exists an E1 > 0 such that
for all |xn, i −c| [ E1 and |x −n, i−c| [ E1 where i=1, 2,..., k, we have

:xn+1 −x −n+1− C
k

i=1
ai(xn, i −x −n, i) : [ E C

k

i=1
|xn, i −x −n, i|. (22)

For such xn, i , x
−

n, i we have

|xn+1 −c| [ E1 and |x −n+1−c| [ E1.

Hence

C(n+1, E1)\ (E[(xn+1 −x −n+1)
2; |xn, i −c|[ E1 , |x

−

n, i−c| [ E1 , for i=1,..., k])
1
2

and so, by the triangle inequality and (22) C(n+1, E1) is bigger than or
equal to

1E 51 C
k

i=1
ai(xn, i −x −n, i)2

2

; |xn, i −c| [ E1 , |x
−

n, i−c| [ E1 , for i=1,..., k6
1
2

− E 1E 51 C
k

i=1
|(xn, i −x −n, i)|2

2

; |xn, i −c| [ E1, |x
−

n, i−c| [ E1, for i=1,..., k62
1
2

.

Hence using the independence of the xn, i −x −n, i for different i in the first
term and applying the triangle inequality to the second term we get

C(n+1, E1) \ lP[|xn −c| [ E1]k−1 C(n, E1)− EkC(n, E1).

792 Wehr and Woo



By the weak law of large numbers, there exists an N > 0 such that for all
n \N,

C(n+1, E1) \ (l(1− E)−kE) C(n, E1).

The last step of the proof is to show that there exists an N1 > N such that

C(N1 , E1) > 0,

since it then follows by induction that for any E there exist M1 > 0, such
that for all n \N1

C(n, E1) >M1(l(1− E)−kE)n

and this proves the proposition.
To prove existence of such an N1, it suffices to show that for any E > 0

there exists an N such that for all n \N the range of xn contains at least
two distinct points in the interval (c− E, c+E). Denote the range of xn by

R(xn)={u ¥ [a, b] : for any E > 0 P[|xn −u| < E] > 0}.

Since the range of x0 consists of more than one point, we can without loss
of generality assume that there exist u and v in R(x0) such that u [ c < v.
Let cg

n=inf {y > c: y ¥R(xn)}. Then cg
n ¥R(xn). Since R(xn+1) ‡R(xn)

(by averaging property of f ) cg
n is nonincreasing and bounded below by c.

Let c*=lim cg
n. We will prove c*=c by contradiction. Since xn converges

to c in probability, we can choose wn ¥R(xn) such that wn converges to c.
Suppose that c* > c. Then by averaging property of f there exists
ui ¥ {c, c*} such that

c < f(u1 , u2 ,..., uk) < c*.

For each n and i let

un, i=˛wn if ui=c

cg
n if ui=c*

Then, by the continuity of f, for large n we have

c < f(un, 1 , un, 2 ,..., un, k) < c*
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Since un, i ¥R(xn), we get

f(un, 1 , un, 2 ,..., un, k) < c* [ cg
n+1,

which is a contradiction. Therefore c*=c. Hence either cg
n=c for some n

or cg
n > c and cg

n converges to c. In either case, it easily follows that for any
E there exists an N such that for all n \N the range of xn contains at least
two points in the interval (c, c+E) and the proof is complete.

APPENDIX

Proof of Proposition 3. For the i th bond of G let s1(i) and s2(i) be
its two end sites. An equivalent expression for f is given by the Dirichlet
variational principle:

f(u1 , u2 ,..., uk)=C min
V

C
k

i=1
ui[V(s1(i))−V(s2(i))]2 (23)

where the minimum is taken over all real-valued functions V defined on the
site set of G with V(st)=1 and V(sb)=0 and the normalization constant
C > 0 is chosen to satisfy f(1, 1,..., 1)=1 (see ref. 1 for the variational
principle). Assumption 2 of Definition 1 is called the Rayleigh’s monoto-
nicity law. We will verify it here for completeness using the variational
principle (see ref. 1 for another proof). Take u1 , u2 ,..., uk , u

−

1, u
−

2,..., u
−

k with
ui [ u −i where i=1, 2,..., k. Let V* be a non-negative real-valued function
defined on the site set of G with V*(st)=1 and V*(sb)=0 which minimizes
(23) with the values of the bond conductivities (u −1, u

−

2,..., u
−

k) (this V* is
called the potential). Since

f(u1 , u2 ,..., uk) [ C C
k

i=1
ui[V*(s1(i))−V*(s2(i))]2 [ f(u −1, u

−

2,..., u
−

k),

Assumption 2 follows. To verify assumption 1 it is now enough to note
that f(u, u,..., u)=uf(1, 1,..., 1)=u (recall that the normalization constant
C was chosen to satisfy f(1, 1,..., 1)=1). Now we prove Assumption 3.
Take two nonnegative numbers u < v and two distinct indices i1 , i2 ¥
{1, 2,..., k}. Let ui1=u and ui2=v. Let V* be a function defined on the site
set of G which minimizes (23) in the case when all the conductivities are
equal to v. By homogeneity, the same function V* also minimizes (23) at
(u, u,..., u). Since V*(st)=1, V*(sb)=0, there exist at least two distinct
bonds such that at the endpoints of each one of these bonds V* takes differ-
ent values. This is true because we have at least two disjoint self-avoiding
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paths connecting the top site to the bottom site and one such bond can be
chosen from each one of these two paths. We can assume without loss of
generality that b1 , b2 are such bonds and that the index i2 ] 1. Let
u1=u, ui1=u and let ui=v for all other indices i ¥ {2,..., k}. Since u1 < v
and V* has different values at the end points of the bond b1, from the
variational principle we have

f(u1 , u2 ,..., uk) < f(v, v,..., v)=v.

To prove the other inequality of Assumption 3 for the same choice of ui,
we use the dual variational principle (called Thomson’s principle) for resis-
tivity (see ref. 1). Recall that resistivity is defined as the reciprocal of con-
ductivity.Thomson’s principle is (see ref. 1):

1
f(u1 , u2 ,..., uk)

=C* min
I

C
k

i=1

1
ui

I(bi)2. (24)

In the above sum, the minimum is taken over all real-valued functions I
defined on the bond set of G satisfying the constraint

C
b ’ s

I(b)=˛
0 if s is a internal site

1 if s is the top site

−1 if s is the bottom site

where b ’ s means that the sum is taken over all bonds b adjacent to the
site s and the C* in the above sum is chosen to satisfy f(1, 1,..., 1)=1.
Using Thomson’s principle we obtain, by an argument similar to the above
the following inequality for resistivity

1
f(u1 , u2 ,..., uk)

<
1
u
.

This is true even in the case u=0, since the right side is then infinite while
the left side is still finite, because there exists a path consisting of resistors
with finite resistivities ( 1v <.) connecting the surface sites.

Proof of Lemma 8. Let

Q={u ¥ [a, c) : for any E > 0 there exists an M such that

for all n P[xn < u] [MEn}.
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Clearly, Q is an interval. First we will prove that sup Q=c. Since
P[xn < a]=0, a ¥ Q. Suppose sup Q < c. First by Assumption 3 of Defini-
tion 1,

f(u1 , u2 ,..., uk) > sup Q

for us(1)=sup Q, us(2)=c,..., us(k)=c and any permutation s of
{1, 2,..., k}. By continuity of f we can choose an E ¥ (0, c) such that

f(u1 , u2 ,..., uk) > sup Q+E (25)

and

us(1)=sup Q− E, us(2)=c− E,..., us(k)=c− E.

Suppose f(u1 , u2 ,..., uk) < sup Q+E. Choose a permutation s of {1, 2,..., k}
such that us(1) [ us(2) [ · · · [ us(k). Then by the Assumption 1 of Definition 1
us(1) < sup Q+E. If us(1) \ sup Q− E then by (25) us(2) cannot be bigger than
or equal to c− E. Hence we have either us(1) < sup Q− E or us(1) < sup Q+E
and us(2) < c− E. Hence

P[xn+1 < sup Q+E]

[C
s

P[f(xn, 1 , xn, 2 ,..., xn, k) < sup Q+E;

xn, s(1) [ xn, s(2) [ · · · [ xn, s(k); xn, s(1) < sup Q+E]

[C
s

P[xn, s(1) < sup Q− E]+C
s

P[xn, s(1) < sup Q+E; xn, s(2) < c− E],

where the sum is taken over all permutation s of {1, 2,..., k}. Hence using
the independence of xn, s(1) and xn, s(2), we have

P[xn+1 < sup Q+E]

[ k! P[xn < sup Q− E]+k! P[xn < c− E] P[xn < sup Q+E].

Take any E1 > 0. By definition of Q and by the weak law of the large
numbers, the above inequality yields existence of N and M such that for all
n \N

P[xn+1 < sup Q+E] <M 1 E1
2
2n+E1

2
P[xn < sup Q+E]
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From this it follows by an easy inductive argument that there exists an MŒ
(depending on E1) such that

P[xn < sup Q+E] <MŒEn1.

Since E1 > 0 is arbitrary it follows that sup Q+E ¥ Q, which is a contra-
diction.

We have shown that for any E > 0 and for any u < c there exists M> 0
such that for all n

P[xn < u] [MEn.

Applying this result to the averaging function g(x)=−f(−x) we prove
that for any E > 0 and for any u > c there exists an M> 0 such that for
all n

P[xn > u] [MEn.

Proof of the lemma is finished.
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